MOMENTM1: On n-dimensional Real Spaces and n-dimensional Complex Spaces I. by Yatsuka Nakamura
environ
vocabularies HIDDEN, TARSKI, NUMBERS, NAT_1, FINSEQ_2, FINSEQ_1, SUBSET_1, SQUARE_1, VALUED_0, CARD_1, XXREAL_0, XCMPLX_0, FUNCT_1, FUNCT_2, FUNCT_7, XBOOLE_0, RVSUM_1, COMPLEX1, RELAT_1, REAL_1, ARYTM_1, MOMENTM1;
notations HIDDEN, TARSKI, XBOOLE_0, VALUED_0, FUNCT_1, FUNCT_2, ORDINAL1, CARD_1, NUMBERS, XCMPLX_0, XREAL_0, COMPLEX1, FINSEQ_1, FINSEQ_2, DOMAIN_1, RELAT_1, XXREAL_0, SUBSET_1, EUCLID;
definitions TARSKI;
theorems FINSEQ_1, FINSEQ_2, FUNCT_1, FUNCT_2, TARSKI, COMPLEX1, FUNCOP_1, ORDINAL1, NUMBERS, XBOOLE_1;
schemes ;
registrations RELSET_1, NUMBERS, XREAL_0, FINSEQ_2, RVSUM_1, ORDINAL1, COMPLEX1, XCMPLX_0;
constructors HIDDEN, COMPLEX1, FINSEQOP, TOPMETR, EUCLID;
requirements HIDDEN, NUMERALS, SUBSET, BOOLE;
equalities EUCLID, FINSEQ_1, FINSEQ_2;
expansions TARSKI, XBOOLE_0;
theorem Th27:
proof
let n be
Nat;
( 1 <= n implies ( rng (i* n) = {<i>} & ex f2 being Function st
( dom f2 = Seg n & rng f2 c= COMPLEX ) ) )
assume A1:
1
<= n
;
( rng (i* n) = {<i>} & ex f2 being Function st
( dom f2 = Seg n & rng f2 c= COMPLEX ) )
A2:
1
in Seg n
by A1;
A3:
n is
Element of
NAT
by ORDINAL1:def 12;
for
A being
set for
p being
FinSequence of
A holds
(
p in n -tuples_on A iff
len p = n )
by FINSEQ_2:133, A3;
then A4:
for
p being
FinSequence of
COMPLEX holds
(
p in n -tuples_on COMPLEX iff
len p = n )
;
A5:
(
i* n in n -tuples_on COMPLEX iff
len (i* n) = n )
by A4;
A6:
len (i* n) = n
by A5;
A7:
Seg (len (i* n)) = dom (i* n)
by FINSEQ_1:def 3;
A8:
len (i* n) = n
by A6;
then A9:
dom (i* n) = Seg n
by A7;
1
in { k where k is Nat : ( 1 <= k & k <= n ) }
by A2;
then A10:
1
in Seg n
;
then A11:
1
in dom (i* n)
by A9;
A12:
(n |-> (In (<i>,COMPLEX))) . 1
= In (
<i>,
COMPLEX)
by A10, FUNCOP_1:7;
reconsider p =
n |-> (In (<i>,COMPLEX)) as
FinSequence ;
A13:
Seg (len p) = dom p
by FINSEQ_1:def 3;
p . 1
= In (
<i>,
COMPLEX)
by A12;
then A14:
(n |-> <i>) . 1 =
In (
<i>,
COMPLEX)
.=
<i>
;
A15:
(n |-> (In (<i>,COMPLEX))) . 1
= <i>
by A14;
rng (n |-> (In (<i>,COMPLEX))) = {<i>}
proof
A16:
rng (n |-> (In (<i>,COMPLEX))) c= {<i>}
proof
let y3 be
object ;
TARSKI:def 3 ( not y3 in rng (n |-> (In (<i>,COMPLEX))) or y3 in {<i>} )
assume
y3 in rng (n |-> (In (<i>,COMPLEX)))
;
y3 in {<i>}
then consider x3 being
object such that A17:
(
x3 in dom (n |-> (In (<i>,COMPLEX))) &
(n |-> (In (<i>,COMPLEX))) . x3 = y3 )
by FUNCT_1:def 3;
x3 in dom (n |-> (In (<i>,COMPLEX)))
by A17;
then
x3 in Seg n
by A13, A8;
then
x3 in Seg n
;
then A18:
(n |-> (In (<i>,COMPLEX))) . x3 = In (
<i>,
COMPLEX)
by FUNCOP_1:7;
(n |-> <i>) . x3 =
In (
<i>,
COMPLEX)
by A18
.=
<i>
;
then A19:
(n |-> (In (<i>,COMPLEX))) . x3 = <i>
;
A20:
(
x3 in dom (n |-> (In (<i>,COMPLEX))) &
(n |-> (In (<i>,COMPLEX))) . x3 = y3 )
by A17;
y3 = <i>
by A20, A19;
hence
y3 in {<i>}
by TARSKI:def 1;
verum
end;
{<i>} c= rng (n |-> (In (<i>,COMPLEX)))
hence
rng (n |-> (In (<i>,COMPLEX))) = {<i>}
by A16;
verum
end;
hence
(
rng (i* n) = {<i>} & ex
f2 being
Function st
(
dom f2 = Seg n &
rng f2 c= COMPLEX ) )
by A9;
verum
end;