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Abstract

In this paper, we formalized some theorems concerning the product of cyclic groups.
In this article, we present the generalized formalization of [l]. First, we formalize that
every finite commutative group which order is composite number is isomorphic to a
direct product of finite commutative groups which orders are relative prime. Next, we

formalize finite direct products of finite commutative groups.
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Listing 1. GROUP_17 - Th.16

theorem :: GROUP_17:16
for G being finite commutative Group,
h,k be Nat
st card G = hxk & h,k are_coprime holds
ex H,K being strict finite Subgroup of G st
the carrier of H = {x where x is Element of G: x|"h = 1.G} &
the carrier of K = {x where x is Element of G: x|’k = 1.G} &

H is normal & K is normal -

(for x be Element of G holds

ex a,b be Element of G st ain H & b in K & x = axb)
&

(the carrier of H) /\ (the carrier of K) = {1_.G};
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Listing 2. GROUP_17 - Th.34

theorem :: GROUP_17:8
for G being strict finite commutative Group
st card G > 1
holds
ex [ be non empty finite set,
F be associative Group—like commutative multMagma—Family of I,
HFG be Homomorphism of product F ,G
st I = support (prime_factorization card G )
& (for p be Element of I holds
F.p is strict finite commutative Group

F.p is Subgroup of G
&

card (F.p) = (prime_factorization card G ).p )
&
(for p,q be Element of I st p <> q holds
(the carrier of (F.p) ) /\ (the carrier of (F.q) ) ={1-G})

HFG is bijective
&
for x be (the carrier of G)—valued total I —defined Function

st for p be Element of I holds x.p in F.p
holds x in product F & HFG.x =Product x;
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Listing 3. GROUP_17 - Th.35

theorem :: GROUP_17:35
for G being strict finite commutative Group st card G > 1 holds
ex [ be non empty finite set,
F be associative Group—like commutative multMagma—Family of I st
I = support (prime_factorization card G)
& (for p be Element of I holds F.p is strict Subgroup of G &
card (F.p) = (prime_factorization card G).p) &
(for p,q be Element of I st p <> q holds
(the carrier of (F.p)) /\ (the carrier of (F.q)) = {1.G})
&

(for y be Element of G

ex x be (the carrier of G)—valued total I —defined Function
st (for p be Element of I holds x.p in F.p) & y = Product x)
&

for x1,x2 be (the carrier of G)—valued total I —defined Function st
(for p be Element of I holds x1.p in F.p) &

(for p be Element of I holds x2.p in F.p) &

Product x1 = Product x2 holds x1=x2;
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Listing 4. GROUP_7 - Def.2

definition
let I be set, F be multMagma—Family of I;
func product F —> strict multMagma means :: GROUP_7:def 2
the carrier of it = product
Carrier F & for f, g being Element of product Carrier F, i being set st i in I
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ex Fi being non empty multMagma, h being Function st Fi = F.i & h = (the multF
of it).(f,g) & h.i = (the multF of Fi).(fi,g.i);

end;
HiIF IR L T, BHFED 74 77 VICiZMT [GROUPZ=Del?] TEFEI T2 [3].
Listing 5. GROUP _4 - Def.2
definition

let G be non empty multMagma;

let F be FinSequence of the carrier of G;

func Product F —> Element of G equals :: GROUP_4:def 2
(the multF of G) ”#x” F;

end;
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Listing 6. GROUP_17 - Def.1
definition

let G be non empty multMagma,
I be finite set,
b be (the carrier of G)—valued
total I —defined Function;
func Product b —> Element of G means :: GROUP_17:def 1
ex f being FinSequence of the carrier of G
st it = Product f & f = bxcanFS(I);
end;
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Listing 7. GROUP_17 - Th.8-9

theorem :: GROUP_17:8
for G being commutative Group,
A,B being non empty finite set,
FA be (the carrier of G)—valued total A —defined Function,
FB be (the carrier of G)—valued total B —defined Function,
FAB be (the carrier of G)—valued total A \/ B —defined Function
st A misses B & FAB = FA +x FB holds
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Product (FAB) = (Product FA) % (Product FB);

theorem :: GROUP_17:9
for G being non empty multMagma,
q be set,
z be Element of G,
f be (the carrier of G)—valued total {q}—defined Function
stf=q.—>1z
holds Product f = z;
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Listing 8. GROUP_17 - Th.11-12

theorem :: GROUP_17:11
for G being Group, A,B being normal Subgroup of G st
(the carrier of A) /\ (the carrier of B) = {1.G} holds
for a,b be Element of G st ain A & b in B holds axb = bxa;

theorem :: GROUP_17:12
for G being Group, A,B being normal Subgroup of G st
(for x be Element of G holds
ex a,b be Element of G st ain A & b in B & x = axb)
& (the carrier of A) /\ (the carrier of B) = {1.G} holds
ex h being Homomorphism of product <+*A,Bx>,G st h is bijective
& for a,b be Element of G st ain A & b in B
holds h.(<*a,bx>) = axb;
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Listing 9. GROUP_17 - Th.18

theorem :: GROUP_17:18
for G being finite commutative Group,
h,k be non zero Nat
st card G = hxk & hk are_coprime
ex H,K being strict finite Subgroup of G st
card H = h & card K = k &
(the carrier of H) /\ (the carrier of K) = {1.G} &
ex I being Homomorphism of product <«H,Kx>,G
st F is bijective
& for a,b be Element of G st ain H & b in K
holds F.(<*a,bx>) = axb;
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GROUP_17 Isomorphisms of Direct Products of Finite Commutative Groups

by Hiroyuki Okazaki, Hiroshi Yamazaki and Yasunari Shidama

Summary: We have been working on the formalization of groups. In [0], we encoded
some theorems concerning the product of cyclic groups. In this article, we present
the generalized formalization of [0]. First, we show that every finite commutative group
which order is composite number is isomorphic to a direct product of finite commutative
groups which orders are relatively prime. Next, we describe finite direct products of

finite commutative groups.

Listing 10. GROUP_17 - abstract

:: Isomorphisms of Direct Products of Finite Commutative Groups
;2 by Hiroyuki Okazaki , Hiroshi Yamazaki and Yasunari Shidama

environ

vocabularies FINSEQ_1, FUNCT_1, RELAT_1, RLVECT_2, CARD_3, TARSKI, BINOP_1,
GROUP_1, XXREAL_0, GROUP_2, CARD_1, FUNCT_4, GROUP_6, GROUP_7, FUNCOP_1,
ALGSTR.0, PARTFUNI, FUNCT_-2, SUBSET_1, XBOOLE_0, STRUCT_0, NAT_1,
ORDINAL4, PRE_TOPC, ARYTM_1, ARYTM_3, FINSET_1, INT_2, ZFMISC_1, PBOOLE,
NEWTON, INT_1, NAT_3, REAL_1, PRE_POLY, XCMPLX_0, UPROOTS, INT_T7;

notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, RELAT_1, FUNCT_1, ORDINALL,
RELSET_1, PARTFUN1, FUNCT.2, DOMAIN_1, FUNCOP_1, FUNCT_4, FINSET._1,
CARD_1, PBOOLE, CARD_3, NUMBERS, XCMPLX_0, XXREAL_0, XREAL_0, NAT_1,
INT_1, INT_2, BINOP_1, FINSEQ_1, NEWTON, PRE_POLY, NAT_3, STRUCT.O0,
ALGSTR-0, GROUP_1, GROUP_2, GROUP_3, GROUP_4, GROUP_6, PRALG_1, GROUP_7,
INT_7;

constructors BINOP_1, REALSET1, GROUP_6, MONOID_0, PRALG_1, GROUP_4, CARD_2,
GROUP_7, RELSET_1, WELLORD2, NAT_D, INT_.7, RECDEF_1, NAT_3, FINSOP_1;

registrations XBOOLE_0, XREAL_0, STRUCT_0, GROUP_2, MONOID_0, FUNCT_2, CARD._1,
CARD_3, GROUP_7, GROUP_3, RELSET_1, FINSEQ_1, INT_1, AOFA_000, GR_.CY_1,
FINSET_1, NAT_3, RELAT_1, FUNCT_1, MEMBERED, FUNCOP_1, NEWTON, VALUED_0,
PRE_POLY, PBOOLE, INT_7, GROUP_6, ORDINALI,

requirements NUMERALS, SUBSET, ARITHM, BOOLE;

begin :: Preliminaries

theorem :: GROUP_17:1
for A)B,A1,B1 be set st A misses B
& Alc=A & Blc=B & Al1\/Bl=A\/B holds
Al = A & Bl = B;

theorem :: GROUP_17:2
for H,K be non empty finite set holds
card product (<*x H, K *>) = card(H)xcard(K);
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theorem :: GROUP_17:3
for ps,pt,f be bag of SetPrimes,
q being Nat
st (support ps) misses (support pt) & f = ps + pt & q in (support ps) holds
ps.q = f.q;

theorem :: GROUP_17:/
for ps,pt,f be bag of SetPrimes,
q being Nat
st (support ps) misses (support pt) & f = ps + pt & g in (support pt) holds
pt.q = f.q;

theorem :: GROUP_17:5
for h be non zero Nat, q being Prime
st not g,h are_coprime holds
q divides h;

theorem :: GROUP_17:6
for h,s be non zero Nat
st for q being Prime st q in support (prime_factorization s)
holds not q,h are_coprime holds
support (prime_factorization s) c= support (prime_factorization h);

theorem :: GROUP_17:7
for h,k,s,t be non zero Nat
st h,k are_coprime & s « t = h * k
& (for q being Prime st q in support prime_factorization s
holds not q,h are_coprime)
& (for q being Prime st ¢ in support prime_factorization t
holds not g,k are_coprime)
holds
s=h&t=k;

definition

let G be non empty multMagma,

I be finite set,

b be (the carrier of G)—valued total I —defined Function;

func Product b —> Element of G means
:: GROUP_17:def 1

ex f being FinSequence of G st it = Product f & f = bxcanFS(I);
end;

theorem :: GROUP_17:8
for G being commutative Group,
A.,B being non empty finite set,
FA be (the carrier of G)—valued total A —defined Function,
FB be (the carrier of G)—valued total B —defined Function,
FAB be (the carrier of G)—valued total A \/ B —defined Function
st A misses B & FAB = FA +x FB holds
Product (FAB) = (Product FA) % (Product FB);

theorem :: GROUP_17:9
for G being non empty multMagma,
q be set,
z be Element of G,
f be (the carrier of G)—valued total {q}—defined Function
stf=q.—>z
holds Product f = z;

begin :: Direct Product of Finite Commutative Groups

theorem :: GROUP_17:10
for X,Y being non empty multMagma holds
the carrier of product <*X,Y>
= product <x the carrier of X the carrier of Y *>;

theorem :: GROUP_17:11
for G being Group, A,B being normal Subgroup of G st
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(the carrier of A) /\ (the carrier of B) = {1_.G} holds
for a,b be Element of G st ain A & b in B holds axb = bxa;

theorem :: GROUP_17:12
for G being Group, A,B being normal Subgroup of G st
(for x be Element of G holds
ex a,b be Element of G st ain A & b in B & x = axb)
& (the carrier of A) /\ (the carrier of B) = {1_.G} holds
ex h being Homomorphism of product <+*A,B+>,G st h is bijective
& for a,b be Element of G st ain A & b in B
holds h.(<x*a,bx>) = axb;

theorem :: GROUP_17:13
for G being finite commutative Group,
m be Nat,
A be Subset of G
st A ={x where x is Element of G: x|"m = 1.G}
holds
A <> {}
&

(for gl,g2 be Element of G
st glin A & g2in A holds gl x g2in A) &
for g be Element of G st g in A holds g” in A;

theorem :: GROUP_17:14
for G being finite commutative Group,
m be Nat,
A be Subset of G
st A ={x where x is Element of G: x|"m = 1.G} holds
ex H being strict finite Subgroup of G
st the carrier of H = A & H is commutative normal;

theorem :: GROUP_17:15
for G being finite commutative Group,
m be Nat,
H being finite Subgroup of G
st the carrier of H = {x where x is Element of G: x|"m = 1_.G} holds
for q being Prime st ¢ in support prime_factorization card H
holds not gq,m are_coprime;

theorem :: GROUP_17:16
for G being finite commutative Group,
h,k be Nat
st card G = hxk & hk are_coprime holds
ex H K being strict finite Subgroup of G st
the carrier of H = {x where x is Element of G: x
the carrier of K = {x where x is Element of G: x
H is normal & K is normal

|"h
|k

(for x be Element of G holds

ex a,b be Element of G st ain H & b in K & x = axb)
&

(the carrier of H) /\ (the carrier of K) = {1_.G};

theorem :: GROUP_17:17
for H,K be finite Group holds
card product (<* H, K *>) = card(H)xcard(K);

theorem :: GROUP_17:18
for G being finite commutative Group,
h,k be non zero Nat
st card G = hxk & hk are_coprime
ex H K being strict finite Subgroup of G st
card H=h & card K=k &
(the carrier of H) /\ (the carrier of K) = {1.G} &
ex I being Homomorphism of product <«+H,Kx>,G
st F is bijective
& for a,b be Element of G st ain H & b in K
holds F.(<*a,bx>) = axb;
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begin :: Finite Direct Products of Finite Commutative Groups

theorem :: GROUP_17:19
for G be Group,
q be set,
F be associative Group—like multMagma—Family of {q},
f being Function of G,product F st F =q .—> G &
for x being Element of G holds f. x = q .——> x holds
f is Homomorphism of G,(product F);

theorem :: GROUP_17:20
for G be Group,
q be set,
F be associative Group—like multMagma—Family of {q}
f being Function of G,product F st F =q .—> G &
for x being Element of G holds f . x = q .——> x holds
f is bijective;

theorem :: GROUP_17:21
for q be set,
F be associative Group—like multMagma—Family of {q},
G be Group st F = q.——> G holds
ex I be Homomorphism of G,product F st
I is bijective &
for x being Element of G holds [ . x = q .—> x;

theorem :: GROUP_17:22
for 10,1 be non empty finite set,
FO be associative Group—like multMagma—Family of 10,
F be associative Group—like multMagma—Family of I,
H,K be Group,
q be Element of I,
k be Element of K,
g be Function st
g in the carrier of product FO &
not qin 10 & I=10\/ {q} & F = FO +* (q .——> K) holds
g +* (q .——> k) in the carrier of product F;

theorem :: GROUP_17:23
for 10,1 be non empty finite set,
FO be associative Group—like multMagma—Family of 10,
F be associative Group—like multMagma—Family of I,
H,K be Group,
q be Element of I,
GO be Function of H,product FO st
GO is Homomorphism of H,product FO
& GO is bijective & not qin 10 & I =10\/ {q} & F = F0 +* (q .——> K) holds
for G be Function of product <+H,Kx> (product F) st
for h be Element of H,k be Element of K
holds ex g be Function
st g=G0.h & G.(<*hkx>) = g ++* (q .——> k) holds
G is Homomorphism of product <*H,K#> product F;

theorem :: GROUP_17:2
for 10,I be non empty finite set,
FO0 be associative Group—like multMagma—Family of 10,
F be associative Group—like multMagma—Family of I,
H,K be Group,
q be Element of I,
GO be Function of H, product FO st
GO0 is Homomorphism of H, product F0
& GO is bijective
&notqinI0 & I=10\/ {q} & F = FO +* (q .—> K) holds
for G be Function of product <+H,Kx>, product F st
for h be Element of H,k be Element of K
holds ex g be Function
st g=G0.h & G.(<*hk+>) = g +* (q .—> k)
holds G is bijective;
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theorem :: GROUP_17:25
for q be set,
F be multMagma—Family of {q},
G be non empty multMagma st
F =q.——> G holds
for y be (the carrier of G)—valued total {q} —defined Function holds
y in the carrier of product F & y.q in the carrier of G &

y=4q4.——>Vy.q;

theorem :: GROUP_17:26
for q be set,
F be associative Group—like multMagma—Family of {q},
G be Group st F = q.——> G holds
ex HFG be Homomorphism of product F,G st
HFG is bijective &
for x be (the carrier of G)—valued total {q} —defined Function
holds HFG.x = Product x;

theorem :: GROUP_17:27
for 10,I be non empty finite set,
FO0 be associative Group—like multMagma—Family of 10,
F be associative Group—like multMagma—Family of I,
H,K be Group,
q be Element of I,
GO0 be Homomorphism of H,(product F0) st
notqinI0 & I=10\/ {q} & F = FO +% (q .——> K) & GO is bijective
ex G be Homomorphism of product <+H,K*>,(product F) st
G is bijective &
for h be Element of H,k be Element of K
ex g be Function st g=G0.h & G.(<*hk%>) = g +* (@ .—> k);

theorem :: GROUP_17:28
for 10,I be non empty finite set,
F0 be associative Group—like multMagma—Family of 10,
F be associative Group—like multMagma—Family of I,
H,K be Group,
q be Element of I,
GO be Homomorphism of product FO, H st not q in 10 &
I=10\/{q} & F = FO +* (q .—> K) & GO is bijective holds
ex G be Homomorphism of product F, product <+xH,K+> st G is bijective &
for x0 be Function,
k be Element of K,
h be Element of H
st h = G0.x0 & x0 in product FO holds
G.(x0 +* (q .——>k)) = <+ h, k *>;

theorem :: GROUP_17:29
for I be non empty finite set,
F be associative Group—like multMagma—Family of I,
x be total I —defined Function
st for p be Element of I holds x.p in F.p
holds x in the carrier of product F;

theorem :: GROUP_17:30
for 10,I be non empty finite set,
FO be associative Group—like multMagma—Family of 10,
F be associative Group—like multMagma—Family of I,
K be Group,
q be Element of I,
x be Element of product F st
not qinI0 & I =10\/ {q} & F = FO +* (q .——> K) holds
ex x0 be total 10 —defined Function,
k be Element of K st x0 in product FO
& x = x0 +* (q .——> k) & for p be Element of I0 holds x0.p in F0.p;

theorem :: GROUP_17:81
for G be Group,
H be Subgroup of G,
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f being FinSequence of G,

g being FinSequence of H

st f=¢g

holds Product f = Product g;

theorem :: GROUP_17:32
for I be non empty finite set,
G be Group,
H be Subgroup of G,
x be (the carrier of G)—valued total I —defined Function,
x0 be (the carrier of H)—valued total I —defined Function
st x=x0
holds Product x = Product x0;

theorem :: GROUP_17:33
for G being commutative Group,
10,I be non empty finite set,
q be Element of I,
x be (the carrier of G)—valued total I —defined Function,
x0 be (the carrier of G)—valued total I0 —defined Function,
k be Element of G st
notqinI0 & I=10\/ {q} & x =x0 +* (q .——> k)
holds
Product x = (Product x0)x*k;

theorem :: GROUP_17:34
for G being strict finite commutative Group
st card G > 1 holds
ex | be non empty finite set,
F be associative Group—like commutative multMagma—Family of I,
HFG be Homomorphism of product F,G st
I = support (prime_factorization card G)
& (for p be Element of I holds F.p is strict Subgroup of G &
card (F.p) = (prime_factorization card G).p) &
(for p,q be Element of I st p <> q holds
(the carrier of (F.p)) /\ (the carrier of (F.q)) = {1.G}) &
HFG is bijective &
for x be (the carrier of G)—valued total I —defined Function
st for p be Element of I holds x.p in F.p
holds x in product F & HFG.x = Product x;

theorem :: GROUP_17:35
for G being strict finite commutative Group st card G > 1 holds
ex [ be non empty finite set,
F be associative Group—like commutative multMagma—Family of I st
I = support (prime_factorization card G)
& (for p be Element of I holds F.p is strict Subgroup of G &
card (F.p) = (prime_factorization card G).p) &
(for p,q be Element of I st p <> ¢ holds
(the carrier of (F.p)) /\ (the carrier of (F.q)) = {1.G})
&

(for y be Element of G

ex x be (the carrier of G)—valued total I —defined Function
st (for p be Element of I holds x.p in F.p) & y = Product x)
&

for x1,x2 be (the carrier of G)—valued total I —defined Function st
(for p be Element of I holds x1.p in F.p) &

(for p be Element of I holds x2.p in F.p) &

Product x1 = Product x2 holds x1=x2;
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