Article

On n－dimensional Real Spaces and n－dimensional Complex Spaces I

中村 八束 ${ }^{1, *}$
Yatsuka Nakamura ${ }^{1, *}$
1 信州大学名誉教授。長野県長野市青木島
1 Shinshu University，Professor Emeritus．Aokijima，Nagano，Japan
＊jaceks19731005＠gmail．com
ID：MOMENTM1
Proof checked by Mizar Version：8．1．08 and MML Version：5．53．1335
Received：November 27，2020．Accepted：April 30， 2021.

Abstract

A stationary object and a moving object are different entities．Light，heat，electro－ magnetic waves，and the moving stars of the universe have similar characteristics．In conventional physics，the state of an object is described by a combination of the coordi－ nates q of position and the coordinates p of momentum．In fact，this description method is suitable for describing the state of many other physical quantities．We develop a basic theory that expresses the duality of such existence．

静止している物体と，運動している物体とでは異なる存在である。光も熱も電磁波も宇宙の運動する宇宙の星々も同様な特徴を持つ。従来の物理学では，位置の座標 q と運動量の座標 p の座標の組み合わせで物体の状態を記述した。実はこの記述法は，他の多 くの物理量の状態記述に適しているのである。そのような存在の二面性を表現する基礎理論を展開する。

Mizar article information

Works in Progress

MOMENTM1 On n-dimensional Real Spaces and n-dimensional Complex Spaces I by Yatsuka Nakamura

Listing 1. MOMENTM1 - abstract (momentm1.abs)

```
:: On n-dimensional Real Spaces and n-dimensional Complex Spaces I
:: 19. Nov. 2020
:: Yatsuka Nakamura
environ
    vocabularies TARSKI, NUMBERS, NAT_1, FINSEQ_2, FINSEQ_1, SUBSET_1, SQUARE_1,
    VALUED_0, CARD_1, XXREAL_0, XCMPLX_0, FUNCT_1, FUNCT_2, FUNCT_7,
    XBOOLE_0, RVSUM_1, COMPLEX1, RELAT_1, REAL_1, ARYTM_1, MOMENTM1;
notations TARSKI, XBOOLE_0, VALUED_0, FUNCT_1, FUNCT_2, ORDINAL1, CARD_1,
    NUMBERS, XCMPLX_0, XREAL_0, COMPLEX1, FINSEQ_1, FINSEQ_2, DOMAIN_1,
    RELAT_1, XXREAL_0, SUBSET_1, EUCLID;
constructors COMPLEX1, FINSEQOP, TOPMETR, EUCLID;
registrations RELSET_1, NUMBERS, XREAL_0, FINSEQ_2, RVSUM_1, ORDINAL1,
    COMPLEX1, XCMPLX_0;
requirements NUMERALS, SUBSET, BOOLE;
definitions TARSKI;
equalities EUCLID, FINSEQ_1, FINSEQ_2;
expansions TARSKI, XBOOLE_0;
theorems FINSEQ_1, FINSEQ_2, FUNCT_1, FUNCT_2, TARSKI, COMPLEX1, FUNCOP_1,
    ORDINAL1, NUMBERS, XBOOLE_1;
begin
reserve a,b,c,d for Real;
reserve x,y,x3,y3,X,z,Y,Z,V for set;
theorem :: MOMENTM1:1
    (REAL) c= COMPLEX;
theorem :: MOMENTM1:2 ::CCD20:
    <i> in COMPLEX;
theorem :: MOMENTM1:3 ::CCD21:
    <i>*< i> = -1r;
theorem :: MOMENTM1:4
    not <i> in REAL;
theorem :: MOMENTM1:5 ::CCC21:
    (REAL) c< COMPLEX;
theorem :: MOMENTM1:6
    REAL* is FinSequenceSet of REAL;
theorem :: MOMENTM1:7
    COMPLEX* is FinSequenceSet of COMPLEX;
theorem :: MOMENTM1:8
REAL* is FinSequenceSet of COMPLEX;
theorem :: MOMENTM1:9
    REAL* c= COMPLEX*;
definition
    let n be Nat;
    func COMPLEX n -> FinSequenceSet of COMPLEX equals
```

```
:: MOMENTM1:def 1
    n-tuples_on COMPLEX;
end;
registration
    let n be Nat;
    cluster COMPLEX n -> non empty;
end;
registration
    let n be Nat;
    cluster -> n-element for Element of COMPLEX n;
end;
theorem :: MOMENTM1:10
    for n being Nat holds
    REAL n = n-tuples_on REAL;
theorem :: MOMENTM1:11
    for n being Nat holds
    COMPLEX n = n-tuples_on COMPLEX;
registration
    let n be Nat;
    cluster -> n-element for Element of (COMPLEX n);
end;
theorem :: MOMENTM1:12
    for n being Nat holds
    REAL n = n-tuples_on REAL;
theorem :: MOMENTM1:13
    for n being Nat holds
    COMPLEX n = n-tuples_on COMPLEX;
theorem :: MOMENTM1:14
    for n being Nat holds
    REAL n is FinSequenceSet of REAL;
theorem :: MOMENTM1:15
    for n being Nat holds
    COMPLEX n is FinSequenceSet of COMPLEX;
registration
    let n be Nat;
    cluster COMPLEX n -> non empty;
end;
registration
    let n be Nat;
    cluster -> n-element for Element of COMPLEX n;
end;
theorem :: MOMENTM1:16 ::CCC22:
    for n being Nat holds
    COMPLEX n = n-tuples_on COMPLEX;
reserve \(z\) for Complex;
reserve \(\mathrm{x}, \mathrm{x} 3, \mathrm{y}, \mathrm{z}, \mathrm{P}, \mathrm{Q}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}\) for set;
theorem :: MOMENTM1:17 for \(n\) being Nat holds n-tuples_on REAL \(=\) Funcs(Seg n,REAL);
theorem :: MOMENTM1:18
for \(n\) being Nat holds
n-tuples_on COMPLEX \(=\) Funcs(Seg n,COMPLEX);
theorem :: MOMENTM1:19
```

for x being object, n being Nat holds x in Funcs(Seg n,REAL) iff ex f being Function st $\mathrm{x}=\mathrm{f} \&$ $\operatorname{dom} \mathrm{f}=\operatorname{Seg} \mathrm{n} \& \operatorname{rng} \mathrm{f} \mathrm{c}=$ REAL;
theorem $::$ MOMENTM1:20 for x being object, n being Nat holds x in Funcs(Seg n,COMPLEX) iff ex f being Function st $x=f \&$ $\operatorname{dom} \mathrm{f}=\operatorname{Seg} \mathrm{n} \& \mathrm{rng} \mathrm{f} \mathrm{c}=$ COMPLEX;
theorem :: MOMENTM1:21
for n being Nat holds n-tuples_on COMPLEX $=$ Funcs(Seg n,COMPLEX);
theorem :: MOMENTM1:22
for n being Nat holds
Funcs(Seg n,REAL)c= Funcs(Seg n,COMPLEX);
theorem :: MOMENTM1:23
for n being Nat holds (n -tuples_on REAL)
$\mathrm{c}=(\mathrm{n}-$ tuples_on COMPLEX);
theorem :: MOMENTM1:24
for n being Nat holds (REAL n) $\mathrm{c}=$ (COMPLEX n);
reserve f for real-valued FinSequence;

definition

let n be Nat;
func $\mathrm{I} * \mathrm{n} \rightarrow>$ FinSequence equals
: MOMENTM1:def 2
$\mathrm{n} \mid \rightarrow>\operatorname{In}(1$, REAL $)$;
end;
definition
let n be Nat;
func $\mathrm{i} * \mathrm{n} \rightarrow>$ complex-valued FinSequence equals
: MOMENTM1:def 3
n $\mid->\operatorname{In}(<\mathrm{i}>$, COMPLEX $)$;
end;
theorem :: MOMENTM1:25 ::CCC525:
for n being Nat holds
$\mathrm{i} * \mathrm{n}$ is Element of COMPLEX n;
theorem :: MOMENTM1:26 ::CCC526:
for n being Nat st $1<=\mathrm{n}$
holds $\mathrm{i} * \mathrm{n}$ in COMPLEX n ;
registration
let n be Nat ;
cluster $->$ n-element for Element of COMPLEX n;

end;

theorem :: MOMENTM1:27
for n being Nat st $1<=\mathrm{n}$
holds rng $(\mathrm{i} * \mathrm{n})=\{<\mathrm{i}>\} \&$
ex f2 being Function st
dom f2 $=$ Seg n \& rng f2 c= COMPLEX;
theorem :: MOMENTM1:28
for n being Nat
holds Funcs(Seg n,REAL)c= Funcs(Seg n,COMPLEX);
theorem $::$ MOMENTM1:29
for n being Nat st $1<=\mathrm{n}$
holds i* n in Funcs(Seg n,COMPLEX)
\& not i* n in Funcs(Seg n,REAL);
theorem :: MOMENTM1:30
for n being Nat st $1<=\mathrm{n}$
holds Funcs(Seg n,REAL)c $<$ Funcs(Seg n,COMPLEX);

```
theorem :: MOMENTM1:31
    for n being Nat st n>=1
    holds (n-tuples_on REAL) c< (n-tuples_on COMPLEX);
theorem :: MOMENTM1:32
    for n being Nat st n>=1
    holds (REAL n) c< (COMPLEX n);
```

Listing 2. MOMENTM1 - vocabulary (momentm1.voc)
OI*
Oi*

Listing 3. MOMENTM1 - article (momentm1.miz)

```
:On n-dimensional Real Spaces and n-dimensional Complex Spaces I
:: 19. Nov. 2020
:: Yatsuka Nakamura
environ
    vocabularies TARSKI, NUMBERS, NAT_1, FINSEQ_2, FINSEQ_1, SUBSET_1, SQUARE_1,
        VALUED_0, CARD_1, XXREAL_0, XCMPLX_0, FUNCT_1, FUNCT_2, FUNCT_7,
        XBOOLE_0, RVSUM_1, COMPLEX1, RELAT_1, REAL_1, ARYTM_1, MOMENTM1;
    notations TARSKI, XBOOLE_0, VALUED_0, FUNCT_1, FUNCT_2, ORDINAL1, CARD_1,
        NUMBERS, XCMPLX_0, XREAL_0, COMPLEX1, FINSEQ_1, FINSEQ_2, DOMAIN_1,
        RELAT_1, XXREAL_0, SUBSET_1, EUCLID;
constructors COMPLEX1, FINSEQOP, TOPMETR, EUCLID;
registrations RELSET_1, NUMBERS, XREAL_0, FINSEQ_2, RVSUM_1, ORDINAL1,
        COMPLEX1, XCMPLX_0;
requirements NUMERALS, SUBSET, BOOLE;
definitions TARSKI;
equalities EUCLID, FINSEQ_1, FINSEQ_2;
expansions TARSKI, XBOOLE_0;
theorems FINSEQ_1, FINSEQ_2, FUNCT_1, FUNCT_2, TARSKI, COMPLEX1, FUNCOP_1,
    ORDINAL1, NUMBERS, XBOOLE_1;
begin
reserve a,b,c,d for Real;
reserve x,y,x3,y3,X,z,Y,Z,V for set;
theorem Th1:
    (REAL) c= COMPLEX by NUMBERS:11;
theorem ::CCD20:
    <i> in COMPLEX;
theorem ::CCD21:
    <i>*<i> = -1r by COMPLEX1:18;
theorem Th4:
    not <i> in REAL by COMPLEX1:7;
theorem ::CCC21:
    (REAL) c< COMPLEX by Th4,Th1;
theorem
    REAL* is FinSequenceSet of REAL;
```

```
theorem
    COMPLEX* is FinSequenceSet of COMPLEX;
theorem Th8: REAL* is FinSequenceSet of COMPLEX
    by FINSEQ_2:91,Th1;
theorem
    REAL* c= COMPLEX* by FINSEQ_2:90,Th8;
definition
    let n be Nat;
    func COMPLEX n }->\mathrm{ FinSequenceSet of COMPLEX equals
    n-tuples_on COMPLEX;
    coherence;
end;
registration
    let n be Nat;
    cluster COMPLEX n -> non empty;
    coherence;
end;
registration
    let n be Nat;
    cluster -> n-element for Element of COMPLEX n;
    coherence;
end;
theorem
    for n being Nat holds
    REAL n = n-tuples_on REAL;
theorem
    for n being Nat holds
    COMPLEX n = n-tuples_on COMPLEX;
registration
    let n be Nat;
    cluster -> n-element for Element of (COMPLEX n);
    coherence;
end;
theorem
    for n being Nat holds
    REAL n = n-tuples_on REAL;
theorem
    for n being Nat holds
    COMPLEX n = n-tuples_on COMPLEX;
theorem
    for n being Nat holds
    REAL n is FinSequenceSet of REAL;
theorem
    for n being Nat holds
    COMPLEX n is FinSequenceSet of COMPLEX;
registration
    let n be Nat;
    cluster COMPLEX n -> non empty;
    coherence;
    end;
registration
    let n be Nat;
    cluster -> n-element for Element of COMPLEX n;
    coherence;
end
```

```
theorem ::CCC22:
    for n being Nat holds
    COMPLEX n = n-tuples_on COMPLEX;
reserve z for Complex;
reserve x,x3,y,z,P,Q,X,Y,Z for set;
theorem Th17:
    for n being Nat holds
    n-tuples_on REAL = Funcs(Seg n,REAL) by FINSEQ_2:93;
theorem Th18:
    for n being Nat holds
    n-tuples_on COMPLEX = Funcs(Seg n,COMPLEX) by FINSEQ_2:93;
theorem Th19:
    for x being object,n being Nat holds
    x in Funcs(Seg n,REAL) iff ex f being Function st x =f &
    dom f = Seg n & rng f c= REAL by FUNCT_2:def 2;
theorem Th20:
    for x being object,n being Nat holds
    x in Funcs(Seg n,COMPLEX) iff ex f being Function st x = f &
    dom f = Seg n & rng f c= COMPLEX by FUNCT_2:def 2;
theorem Th21:
    for n being Nat holds
    n-tuples_on COMPLEX = Funcs(Seg n,COMPLEX) by FINSEQ_2:93;
theorem Th22:for n being Nat holds
    Funcs(Seg n,REAL)c= Funcs(Seg n,COMPLEX)
    proof
        let n be Nat;
        thus Funcs(Seg n,REAL)c= Funcs(Seg n,COMPLEX)
        proof
            let x3 be object;
            assume x3 in Funcs(Seg n,REAL);then
            consider f be Function such that
            A1: x3 = f & 
            dom f = Seg n & rng f c= REAL by Th19;
            thus x3 in Funcs(Seg n,COMPLEX) by Th1,Th20,XBOOLE_1:1,A1; ::CCC20,
        end;
    end;
theorem Th23:
    for n being Nat holds (n-tuples_on REAL)
    c= (n-tuples_on COMPLEX)
    proof
        let n be Nat;
        now let x3 being object;
            assume A1: x3 in (n-tuples_on REAL);
            A2: Funcs(Seg n,REAL) c= Funcs(Seg n,COMPLEX) by Th22;
            x3 in Funcs(Seg n,REAL)by Th17,A1;then
            x3 in Funcs(Seg n,COMPLEX)by A2;
            hence x3 in (n-tuples_on COMPLEX)by Th21;
        end;
        hence thesis;
    end;
theorem
    for n being Nat holds (REAL n) c= (COMPLEX n) by Th23;
reserve f for real-valued FinSequence;
definition
    let n be Nat;
    func I*n -> FinSequence equals
    n | - In(1,REAL);
```


correctness;

end;

definition

let n be Nat;
func $\mathrm{i} * \mathrm{n} \rightarrow>$ complex-valued FinSequence equals
n $\mid->\operatorname{In}(<\mathrm{i}>$, COMPLEX $)$;
correctness;
end;
theorem ::CCC525:
for n being Nat holds
$\mathrm{i} * \mathrm{n}$ is Element of COMPLEX n;
theorem ::CCC526:
for n being Nat st $1<=n$
holds $\mathrm{i} * \mathrm{n}$ in COMPLEX n;
registration
let n be Nat;
cluster $\rightarrow>\mathrm{n}$-element for Element of COMPLEX n; correctness;
end;
theorem Th27:
for n being Nat st $1<=\mathrm{n}$
holds rng $(\mathrm{i} * \mathrm{n})=\{<\mathrm{i}>\} \&$
ex f2 being Function st
dom $\mathrm{f} 2=\operatorname{Seg} \mathrm{n} \& \mathrm{rng} \mathrm{f} 2 \mathrm{c}=$ COMPLEX
proof
let n be Nat;
assume A1: $1<=\mathrm{n}$;
A2: 1 in Seg n by A1;
A3: n is Element of NAT by ORDINAL1:def 12 ;
for A being set, p being FinSequence of
A holds p in n -tuples_on A iff len $\mathrm{p}=\mathrm{n}$ by FINSEQ_2:133,A3;then
A4: for p being FinSequence of COMPLEX holds
(p in n -tuples_on COMPLEX iff len $\mathrm{p}=\mathrm{n}$);
A5: $\mathrm{i} * \mathrm{n}$ in n -tuples_on COMPLEX iff len ($\mathrm{i} * \mathrm{n}$) $=\mathrm{n}$ by A4;
A6: len (i* n) $=\mathrm{n}$ by A5;
A7: Seg len $(\mathrm{i} * \mathrm{n})=$ dom ($\mathrm{i} * \mathrm{n}$) by FINSEQ_1:def 3;
A8: len $(\mathrm{i} * \mathrm{n})=\mathrm{n}$ by A6;then
A9: dom $(\mathrm{i} * \mathrm{n})=\operatorname{Seg} \mathrm{n}$ by A7;
1 in $\{\mathrm{k}$ where k is Nat: $(1<=\mathrm{k} \& \mathrm{k}<=\mathrm{n})\}$ by A2;then
A10: 1 in Seg n ;then
A11: 1 in dom ($\mathrm{i} * \mathrm{n}$) by A9;
A12: $(\mathrm{n} \mid->\operatorname{In}(<\mathrm{i}\rangle$, COMPLEX $)) .1=\operatorname{In}(<\mathrm{i}\rangle$,COMPLEX) by A10,FUNCOP_1:7;
reconsider $\mathrm{p}=(\mathrm{n} \mid->\operatorname{In}(<\mathrm{i}\rangle$, COMPLEX $))$ as FinSequence;
A13: Seg len $\mathrm{p}=\mathrm{dom} \mathrm{p}$ by FINSEQ_1: def 3 ;
p. $1=\operatorname{In}(<\mathrm{i}\rangle$, COMPLEX $)$ by A12; then

A14: $(\mathrm{n} \mid \gg<\mathrm{i}>) .1$
$=\operatorname{In}(<\mathrm{i}\rangle$, COMPLEX $)$
.$=<\mathrm{i}>$;
A15: $(\mathrm{n} \mid->\operatorname{In}(<\mathrm{i}>$,COMPLEX $)) .1=<\mathrm{i}>$ by A14;
$\operatorname{rng}(\mathrm{n} \mid->\operatorname{In}(<\mathrm{i}\rangle$, COMPLEX $))=\{<\mathrm{i}\rangle\}$
proof
A16: $\operatorname{rng}(\mathrm{n} \mid->\operatorname{In}(<\mathrm{i}\rangle$, COMPLEX $)) \mathrm{c}=\{\langle\mathrm{i}\rangle\}$
proof let y3 be object;
assume y3 in rng(n $\mid->\operatorname{In}(<\mathrm{i}\rangle$,COMPLEX $)$); then
consider x3 being object such that
A17: x 3 in $\operatorname{dom}(\mathrm{n} \mid \rightarrow \operatorname{In}(<\mathrm{i}>$,COMPLEX) $)$
\& ($\mathrm{n} \mid->\operatorname{In}(<\mathrm{i}>$, COMPLEX) $) \cdot \mathrm{x} 3=\mathrm{y} 3$ by FUNCT_1:def 3 ;
x 3 in $\operatorname{dom}(\mathrm{n} \mid->\operatorname{In}(<\mathrm{i}>$,COMPLEX)) by A17; then
x3 in Seg n by A13,A8; then
x 3 in Seg n ; then
A18: $(\mathrm{n} \mid->\operatorname{In}(<\mathrm{i}>$, COMPLEX $)) \cdot \mathrm{x} 3=\operatorname{In}(<\mathrm{i}>$, COMPLEX $)$ by FUNCOP_1:7;

```
            (n |-> <i>).x3
            = In(<i>,COMPLEX) by A18
            .= <i> ;
            then
                A19: (n | - > In(<i>,COMPLEX)).x3= <i>;
                A20: x3 in dom (n |-> In(<i>,COMPLEX))
                & (n | -> In(<i>,COMPLEX)).x3= y3 by A17;
                y3=<i> by A20,A19;
                hence y3 in {<i>} by TARSKI:def 1;
            end;
        {<i>} c= rng(n | > In(<i>,COMPLEX))
        proof let y3 be object;
            assume y3 in {<i>};then
            A21: y3= <i> by TARSKI:def 1;
            A22: 1 in dom (n |-> In(<i>,COMPLEX)) by A11;
            1 in dom (n | -> In(<i>,COMPLEX))
            & (n | - > In(<i>,COMPLEX)).1= y3 by A21,A22,A15;
            hence y3 in rng(n |-> In(<i>,COMPLEX)) by FUNCT_1:def 3;
        end;
        hence thesis by A16;
    end;
    hence rng (i*n)={<i>} &
    ex f2 being Function st
    dom f2 = Seg n & rng f2 c= COMPLEX by A9;
end;
theorem Th28:
for n being Nat
holds Funcs(Seg n,REAL)c= Funcs(Seg n,COMPLEX) by Th22;
```

```
theorem Th29:
```

theorem Th29:
for n being Nat st 1<= n
for n being Nat st 1<= n
holds i* n in Funcs(Seg n,COMPLEX)
holds i* n in Funcs(Seg n,COMPLEX)
\& not i* n in Funcs(Seg n,REAL)
\& not i* n in Funcs(Seg n,REAL)
proof let n be Nat;
proof let n be Nat;
assume A1: 1 <= n;
assume A1: 1 <= n;
n-tuples_on COMPLEX = Funcs(Seg n,COMPLEX) by FINSEQ_2:93;then
n-tuples_on COMPLEX = Funcs(Seg n,COMPLEX) by FINSEQ_2:93;then
A2: i* n in Funcs(Seg n,COMPLEX);
A2: i* n in Funcs(Seg n,COMPLEX);
1 in { k where k is Nat: 1<= k \& k <= n } by A1;then
1 in { k where k is Nat: 1<= k \& k <= n } by A1;then
A3: 1 in Seg n;
A3: 1 in Seg n;
A4: not <i> in REAL by Th4;
A4: not <i> in REAL by Th4;
now assume A5: i* n in Funcs(Seg n,REAL);
now assume A5: i* n in Funcs(Seg n,REAL);
consider f be Function such that
consider f be Function such that
A6: (i* n) = f \& dom f = Seg n \& rng f c= REAL by A5,FUNCT_2:def 2;
A6: (i* n) = f \& dom f = Seg n \& rng f c= REAL by A5,FUNCT_2:def 2;
1 in Seg n by A3;then
1 in Seg n by A3;then
A7: (i* n).1 in rng (i* n) by A6,FUNCT_1:def 3;
A7: (i* n).1 in rng (i* n) by A6,FUNCT_1:def 3;
(i*n).1 in {<i>} by A7,A1,Th27;then
(i*n).1 in {<i>} by A7,A1,Th27;then
A8: (i*n).1 = < i> by TARSKI:def 1;
A8: (i*n).1 = < i> by TARSKI:def 1;
<i> in REAL by A8,A7,A6;
<i> in REAL by A8,A7,A6;
hence contradiction by A4;
hence contradiction by A4;
end;then
end;then
not i* n in Funcs(Seg n,REAL);
not i* n in Funcs(Seg n,REAL);
hence thesis by A2;
hence thesis by A2;
end;
end;
theorem Th30:
theorem Th30:
for n being Nat st 1<= n
for n being Nat st 1<= n
holds Funcs(Seg n,REAL)c< Funcs(Seg n,COMPLEX)
holds Funcs(Seg n,REAL)c< Funcs(Seg n,COMPLEX)
proof let n be Nat;
proof let n be Nat;
assume A1: 1 <= n;
assume A1: 1 <= n;
A2: Funcs(Seg n,REAL)c= Funcs(Seg n,COMPLEX)by Th28;
A2: Funcs(Seg n,REAL)c= Funcs(Seg n,COMPLEX)by Th28;
now assume A3: Funcs(Seg n,REAL)= Funcs(Seg n,COMPLEX);
now assume A3: Funcs(Seg n,REAL)= Funcs(Seg n,COMPLEX);
i* n in Funcs(Seg n,COMPLEX) by Th29,A1;
i* n in Funcs(Seg n,COMPLEX) by Th29,A1;
hence contradiction by A3,Th29,A1;
hence contradiction by A3,Th29,A1;
end;
end;
hence thesis by A2;
hence thesis by A2;
end;

```
    end;
```

```
theorem Th31:
    for n being Nat st n>=1
    holds (n-tuples_on REAL) c< (n-tuples_on COMPLEX)
    proof let n be Nat;
        assume A1: n>=1;
        A2: Funcs(Seg n,REAL)=(n-tuples_on REAL) by Th17;
        Funcs(Seg n,COMPLEX)=(n-tuples_on COMPLEX) by Th18;
        hence thesis by A1,A2,Th30;
    end;
theorem
    for n being Nat st n>=1
    holds (REAL n) c< (COMPLEX n) by Th31;
```

